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measured at low temperatures utilizing differential techniques and a magnetic
field swept from zero to six tesla. When the m A o  surface is in accumulation
three distinct series of oscillations, periodic in inverse magnetic field ,
are observed . The temperature and magnetic field dependence of the oscilla—
tion amplitudes suggests an effective mass of .04 m and a Dingle
temperature of 26K.
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ABSTRACT

The resistivity and Hall coefficient of gated n—InAs epilayers

have been measured at low temperatures utilizing differential

techniques and a magnetic field swept from zero to six tesla.

When the m A n  surface is in accumulation, three distinct series

of oscillations, periodic in inverse magnetic field , are observed .

These series are interpreted as the quantization of the surface

electron energies into three subbands. The densities of these

subbands are roughly linear in applied gate voltage and vanish

as one approaches flatband. The temperature and magnetic field

dependences of the oscillation amplitudes suggests an effective

mass of .04 in and a Dingle temperature of 26K.
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1. Introduction

Most surface quantization studies to date have been undertaken on inversion

layers~ in which case the surface transport can be Isolated from that in the

bulk. Accumulation layer transport studies have been less common . Tout2’3

however , has demonstrated the existence of surface quantization and characterized

the behavior of the electronic energy levels in InAs surface accumulation

layers using capacitance measurements and tunneling through a native oxide. At

least qualiLdlive agreement with several of the theoretical pred ictions of

Baraff and Appelbaum4 was found . Surface quantization in n—channel m A o

inversion layers has been studied by Kawaji and Kawaguchi5 who found an in-

crease in mobility with carrier density , consistent with coulomb

scattering in the quantized surface channel.

In this paper , we report on electrical transport measurements made on

accuimilation layers formed on the surface of InAs epitaxial films . To

distinguish the surface contribution to the transport coefficients an tIOS

structure was employed and an excitation voltage was added to the dc gate

voltage. The resulting differential signal was measured for both conductivity

and Hall configurations as functions of gate voltage , magnetic field , and

temperature . Three series of oscillations are observed and an analysis

in terms of surface quantization in the accumulation layer yields informa-

tion on the carrier effective mass and scattering lifet ime which is com-

pared to the bulk and surface parameters observed by others.

2. Experimental

The films of n—type IMs grown heteroepitaxially on GaAs have been described

previously.6 They are approximately 15 pm thick. Electrical measurements at 
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15 —3
77K have found a bulk carrier density of about 2 10 cm , mobi l i ty  of

about 1.2 x iO
S
cm2/V_ s, and a front surface whliI~ Is strongly at rumuLate ~d.

A 1500 X Insulating SW
2 

layer covers the sample .Irt.l and an . Ii *n itnua i gate

completes the structure as shown In Figure 1. The flatband condition for

i~ 4~4~J ~~~

Fig. 1. Schematic of the sample and the measurement circuitry .
The cross—hatched area on the sample represents the gate
coverage.

this device occurs for applied electric fields near the break—down field

of the insulator , thus precluding study of inversion layers. Two samples

of this type h ive been measured . The one which yI~elded most of the data

presented here has flatband condition occurring at VFB = —33 V. This value

comes from capacitance versus voltage curves which are essentially temperature

independent from 4 K to 77 K. The total Hall coefficient for these films



3

decreases8 from 77 to 4 K, explained by our mul t i— layer ans~lysia ?ns

suiting from a decrease in bulk mobiIity~ The bulk .iarr i&- r coilcentra—

tion is, in fact, essentially constant between 77 and 4 K indliating

the absence of freeze—out effects. Most measurements were made at 4 K with

the sample immersed in liquid helium . The temperature was lowered by pumping

on the helium and raised by heating the sample mount.

A constant current of 1.0 ma was passed through the InAs film and the

voltage acrobs the clover—leaf sample depicted in Figure 1 was measured in

both the conductivity (V
0
) and Hall (V

h
) configurations . These dc voltages

exhibit oscillatory behavior as functions of gate voltage and magnetic field ,

but the amplitude is too small for reliable analysis. At T - 4 K and B = 6 T,

for example, the oscillations were a maximum of 1% of the total and less than

10% of the change of the dc voltage from flat band to strong accumulation. Thus,

a differential technique was utilized in which a 1 kl1z signal of 0.1 or 0.2 V

rms was added to the dc gate voltage. The sample voltage was fed into an

Ithaco Dynatrac III lock—in amplifier using the vector sum mode resulting in

the measured quantities dV0/dVg I and IdV h/dVgI (hereafter referred to

as dV0 and dVh) as indicated in Figure 1. Lowering the ac frequency to as low

as 20 Hz yielded no change in the experimental curves.

3. Results

Several curves of dV0 and dVh versus V
g 
were made using magnetic fields

from 0.5 to 6 T. Two such curves for dV
0 
at 4 K and 85 K are shown in Fig. 2b,

which clearly indicates the low temperature nature of the oscillatory behavior.

Curves similar to the 4 K one are reported by Wagner, et al.
9 

The gate

voltage dependence of the oscillations in Fig. 2b shows an onset on the 

~~- - ---~~- .- ~~~~--—--
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accumulation side of the flat band voltage V~~ . V~~ ~ — 33 V was obtained from

an analysis1° of the capacitance-voltage plot shown in Fig. 2a. The large

long period peak seen In dV
0 at 85 K is expected from onductivity measurements6’7

and is due to the decrease of mobility with increasing surface potential. The

small peak near is more pronounced at 4 K and is similarly found in dV
h
.

Similar structure is seen in silicon PiOS devices with field—effect mobility

easureaenta” and Is probably related to interface states . The temperature

dependence of the oscillation amplitudes for both dV0 and dV
h is shown In

Fig. 3 , and will be discussed in the following section.

V, ( volts)

Fig. 2 (a) The capacitance—voltage plot taken at 77 K and B — 0.
Flatband condition occurs at —33.3V. (b) Examples of
dV

versus Vg experimental plots. Both curves are for

B — 6 T , the bottom one being taken at 85 K and the top
one at 4 K.
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Fig . 3. Oscillation amplitudes versus temperature. The circles are
dV0 dVhobtained from ~~~~~

— and the crosses from versus V
g plotsg B

at B — 6 T. The curves are calculated from Eqn (2) with the

indicated values of effective mass. The data and curves are

normalized to unity at T — 0.

Typical plots of dV
0 
as a function of magnetic field are shown in

Fig. 4. For V
g 

> VFB the plots consist of series of peaks which are periodic

in 1/B. The identification of peaks corresponding to Landau levels of

different subbands (see below) are indicated in the figure. Over the

voltage range measured, three subbands are observed . The peaks at the higher

fields and designated by (o) are assigned to the ground state subband Landau

— .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - —— -
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levels and peaks assigned to the first (x) and second (A) excited subbands

are observed at correspondingly lower magne t ic fields. This identification

of peaks is aided by the construction of a graph similar to that used by

others.’2 The peak positions obtained fr om dV0 or dV
h 
versus V

9 
plots are

V,..33

B, (Iss lol

dV
Fig. 4. versus magnetic field at 4 K for various gate voltages.

B
Vg 

— —35 V corresponds to near flatband. The peaks corres-

ponding to the three subbands are identified by o—ground

state subband, x—first excited subband, tb—second excited
subband.

put on a B versus V graph. Landau levels of different subbands are then

seen to form well defined series of lines and by locating peaks in plots

such as those shown in Figs . 4 and 5 on this graph, the particular subband

can be identified . Since oscillations from different subbands have different

~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4
B,ft .slo)

Fig. 5. versus magnetic field for V~ — +20 V. Peaks are labeled

as in Fig. 4.

periods in 1/B and in V
9 
the superposition of Landau peaks from different

subbands can also be distinguished. Perhaps the clearest indication of the

three subbands is seen in Fig. 5 which shows the magnetic field dependence of

dV
h 

for V~ — +20 V. This figure distinctly illustrates all three sets of

oscillations with regions of overlap between the ground and f irst excited

subbands occurring near 4 T and between the first and second exc ited subbands

occurring near 1 T.

The second sample studied had a gate which covered less of the total

surface area. It produced much the same structure in dV0 as the sample

—. 

-~~~- --~~~~~ - . - ~~~~~~~~~~~ - - .~~~~~~~~~ --rn,-~~-—— -- -~~~~~~~—. -~~~- -- -.- ~~~~~~~~~~~~~~~~~~~~ --
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here reported, but only two subbanda were clearly distinguished and their

densities at V~ — 0 were about 302 lower than those of the ground and first

excited subband densities in the present sample. That samp le did , however

have clear indications of spin splitting beginning in the n • 0, 1, 2 Landau

levels of the ground state subband at 5 1.

The principle difference between our results and those of Wagner et al.9

is the absence in our data of a region between the ground levels and first

excited levcl. where the oscillations disappeared . We also did not observe

a measurable decrease in VFB between 77 and 4 K. Comparison of different

samples is difficult, h..iwever , because of the likelihood of variation in

surface states and oxide charge.

4. Discussion

Since the InAs surface is strongly affected by surface states and trapped

charge in the oxide13
, extraction of the subband energies and densities as a func-

tion of surface potential4’14 
would be somewhat speculative. The densities of carrica

for each subband , however , can be obtained at a given gate voltage by

using the theory of de Haas—van Alfen type phenomenon which results in the

relation2:

__________ 
4.84 x io14 

—2N
1 

— 

~~ P1(1/B) P
1
(1/B) m (1)

where Pi(l/B) is the period of oscillation in 1/B (in units of T 1) for

a subband 1, and N
i Is the density of carriers per unit area. These

densities have been calculated for the three subbands from plots like those

in Figs. 4 and 5 and are plotted in Fig. 6 using averages of the dVh and dV0
plots. The dependence of density on gate voltage is linear to within the

-

~ 

-- .----- .---- -—-“ .. -~-~ -—.— - - ---rn—-.--—-——- --- —--——-- - -  —
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0 1 5 ’

~~l O .
0

t
uI0,5 x

0
0 S

S A
p I I I I

-zo o 20 40
V5 (volts )

Fig. 6. Subband densities versus gate voltage at 4 K. The symbols
identifying subbands are those used in Fig. 4.

experimental accuracy and the gate voltage intercepts corresponding to zero

density are —32 ± 2 V, —29 ± 3 and —15 ± 8 V for the ground , first and second

excited subbands, respectively.

The temperature dependence of oscillation amplitudes in magnetoresistance

can be used to determine the effective mass.’5 Superimposed on our experimental

results in Fig. 3 are the theoretical, curves for different effective masses.

The temperature dependence factor15 
should be

Ampl. ~ T 
(2)

I2ir kT
sinh[ 

~
!Iw

~

~~~
,-
~~~~~~---— -~~~~~ 

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — . .- -—- -  - - - ---- ----~- -.-~~~~~ A
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where Wc — eB/m* is the cyclotron frequency for electrons in the plane of

the film. The oscillations analyzed for Fig. 3 resulted from the ground

state subband at 6 T. All the curves were normalized to the same value

at T — 0. It is seen that the effective mass (~O.O4 me) is greater than

16
the bulk value of .024 m

e
. Using the temperature dependence of magneto—

resistance quantum oscillations, Sladek~
7 found an apparent inc rea:e of

effective mass for bulk InA s with increasing magnetic field with m - .035 me

at 2.6 T, somewhat larger than predicted .
2 

Tsui
2 

found a cyclotron effective

mass in surface layers of InAs from tunneling measurements which was about

10% larger than predicted for bulk InAs . He found masses in the range .025

to .032 m at 6 T for the Landau levels n — 0 to 2 of the ground state sub—
e

band.

The onset of oscillations occurred at different magnetic fields for

each of the three subbands. At comparable subband densities the first and

second excited subbands required nearly equal fields to be observed , but

the ground state subband required fields about two times larger. The con-

dition for oscillations to be observed is w T  > 1, where w — eB/m and T

is the carrier scattering time in the surface layer. Assuming comparable

effective masses for each of the subbands, this indicates scattering times

are smaller for the ground state subband than for the excited levels. This

is probably due to the ground state carriers being held closer to the surface.
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The magnetic field dependence of the oscillation amplitudes can be used

to determine the Dingle temperature.’5 Due to the superposition of peaks

from different subbands an accurate determination of the amplitudes is

difficult. However, for the ground state subband at Vg 
- 0 and I — 4 K

the amplitudes did follow the expec ted B½ exp (2
~
T2kf/t

~
w
~
) dependence and ,

assuming m* 0.04 m
el a Dingle temperature of T” 26 K was determined .

This compares to T’ — 16.9 K found for bulk InA s at 4.2 K)7 The larger

Dingle temperature indicates a shorter scattering lifetim e which is as ex-

pected for the surface layer. It is interesting to note that if this lifetime

is associated with the momentum relaxation time involved in the surface

mobility , a value of p — 4 x 10
3cm2/V—sec is calculated which agrees fairly

well with u — 7 ~ lO3cm2/V—sec found7 at 77 K on a similar samp le and thought

to be nearly temperature independent.8

5. Conclusions

Oscillations in the conductivity and Hall voltages have been identified

with carrier energy quantization in the surface accumulation layer of InAs.

The three subbands observed have densities at Vg 
= 0 and 1 4 K of 9.5,

2.5,andO.5 x lO~~cm 2 which agree reasonably well with those found by Wagner ,

et al.9 on similar samples. The temperature dependence of oscillations due

to the gr~,und level indicates an effective mass of about .04 m and thee

magnetic field dependence of the amplitudes indicates a Dingle temperature

of 26 K.
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